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Chapter 1

Introduction

Arguably the most popular sport on the planet, football is a multi-billion industry

with revenues only ever increasing. According to Deloitte, the revenues of the “Big

Five” European football leagues have increased from e4.8 billion (2001) to e17

billion (2019) [1]. Football’s growing popularity has led to a surge of new technologies

introduced by statisticians and data scientists to give teams the edge against their

opponents [3]. Among these are the use of machine learning (ML) algorithms to

predict football match results, which are also used by gamblers [12].

Artificial intelligence (AI) is believed to be the future of technology. Examples

include: self-driving cars, user-targeted advertisements, etc. ML, a subset of AI, is

becoming progressively more popular. This paper aspires to utilize ML’s popularity

and accessibility in recent years to answer the question: "To what extent can

supervised ML algorithms — artificial neural networks and support vector

machines — be used to predict football matches in the Premier League?"

The concept of using statistical methods to predict sporting event results is not new,

with one of the earliest statistical modelling methods coming from Moroney in 1956

[7]. In more modern times, the use of ML techniques has been widely explored in

football. One of the first studies on artificial neural networks (ANNs or NNs) was

conducted by Purucker (1996) [10] to forecast NFL games. One limitation found

was that the study used limited features to train the NN. Kahn [5] then added to

Purucker’s studies in 2003 by increasing the number of parameters for the NN and

acquired superior outcomes, confirming that NNs may be suitable for predicting

sporting events. A more recent study by Hucaljuk in 2011 [2] tested 6 ML methods
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to predict football scores, concluding that the NN achieved the best results. This

study was particularly helpful in the composition of this paper as the nature of the

study — comparing different algorithms on the same problem — is very similar.

As a school representative in football, I am constantly analyzing matches, trying

to predict which team is likely to win, and considering factors that may forecast

the outcome. For example, if Liverpool played Chelsea, it would be reasonable to

consider the current league position of both teams, their form and perhaps some

arbitrary metric like the market value of the team and many more. The number of

factors are limitless. Some people believe that they are better at predicting matches

than others; that how the betting industry came about. This paper aims to go

beyond just finding which algorithm is the most accurate, it aims to evaluate ML

algorithms in a real world application like gambling.

Compared to past research, this paper is both unique and significant in that it thor-

oughly compares two of the most suitable ML algorithms, support vector machines

(SVMs) and NNs, for this particular application (sporting events), which includes

in-depth analysis of the computational complexity of each algorithm, and its implic-

ations. Past research has failed to properly address the complexity of ML algorithms

in terms of time and space, especially in the context of football. Conflicting opinions

also made it rather difficult for other scholars to provide theoretical background on

the computational complexities of ML algorithms.
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Chapter 2

Theoretical Background

2.1 Machine Learning

An older definition of ML is that it is a "field of study that gives computers the

ability to learn without the need of being explicitly programmed" [11]. However, in

recent times, ML has developed and , put simply, is seen more as algorithms that

can automatically detect patterns in data, be used to predict future data, or perform

other kinds of decision-making under conditions of uncertainty [8].

2.2 Regression and Classification

This paper concerns supervised learning, where a labelled set of inputs (x) and

desired outputs (y), represented by T = {(xi, yi)}N
i=1, where T and N describes the

training set and number of examples respectively, are given to ML algorithms to

“learn” and predict outputs. Regression and classification are the only to types of

supervised learning. Classification algorithms aim to learn how inputs (x) produce

outputs (y), where y ∈ 1, ..., C (number of classes). C = 2 describes a binary

classification; C > 2 is a multiclass classification. Regression is no different from

classification other than the output being continuous y ∈ IR. [8].

2.3 Classification Algorithms

There are only three outcomes (W, D, L) that result from a football match, hence

C = 3, making this a multiclass problem.
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2.3.1 Common Algorithms

There are many different classification ML algorithms. Selecting a model is con-

sidered an art due to the variety of functions that each algorithm is capable of.

Below are some common classification algorithms.

Out of these algorithms, the two most appropriate for this investigation’s specific

dataset are SVMs and NNs, due to the following reasons:

• For classification problems in which there is no domain knowledge on the prob-

lem, SVMs generally performs better than other algorithms.

• SVMs are effective in high-dimensional spaces. Given that our dataset is 30-

dimensional, SVM is an ideal choice.
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• NNs are deemed to be the "future" of ML, where their applications range from

self-driving cars to disease detection.

• NNs can solve non-linear problems because of activation functions. SVMs can

also solve non-linear problems using the rbf kernel.

Although both ML algorithms have their strengths and weaknesses, they are com-

pletely different mathematically and conceptually. Most data scientists prefer SVMs

because they can mathematically describe the model that has been trained. NNs,

however, determine patterns in a way that is unknown to humans.

2.3.2 Support Vector Machines

SVMs are thought to be one of the most accurate off-the-shelf ML algorithms. The

objective of SVMs is to find a hyperplane in an N-dimensional space that classifies

data points.

Figure 2.1: 2D linearly separable SVM [4]

The decision boundary of a linear SVM is determined by the maximum margin or

hyperplane, which is characterized as the function that has the biggest separation to

the closest training data points of any class, since, generally, the bigger the margin the

smaller the error [9]. The nearest data points to the hyperplane are called support

vectors (SV) because they "support" the algorithm by determining the maximum
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margin. In other words, even if the inputs to the left or right of the SV is changed,

as far as the two SVs stay the same, the maximum margin will remain the same. In

Figure 2.1, there are 3 SVs that are on the margin boundaries, known formally as

the Maximum Margin Hyperplane.

Unfortunately, many datasets are not linearly separable (non-linear); thus a linear

SVM cannot be used to predict those datasets, which is what kernelized SVMs aim to

solve [6]. What was explained in this section is the most basic and simplified version

of SVM. Kernelized SVMs will be used in this paper, they utilize a mathematical

method called the kernel trick, however, explaining this concept is mathematically

challenging and is beyond the scope of computer science and this paper.
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2.3.3 Neural Networks

Loosely based on the human brain (Figure 2.2), NNs refer to non-linear models that

involve combinations of matrix multiplications and non-linear operations.

Figure 2.2: Neural network diagram [9]

NNs are comprised of a few layers of interconnected nodes that transmits information

from an input layer to an output layer. The entire model is depicted by a sequence

of matrix functions (2.1) where data is:

1. Added together to create a sum

2. Multiplied by a weight

3. Added to a bias number

4. Mapped into the activation function

This cycle is known as the feedforward cycle and permits NNs to perform logical

decisions like XOR or AND logic gates. Since the nodes in each layer of the NN can

be learned, NNs can discover patterns to classify data.
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(2.1)

NNs, depending on the model’s complexity, can take longer to train compared to

other techniques, due to their learning technique of back propagation.

Extensive knowledge of football and football rules are not required to understand

the contents of this paper and will therefore not be mentioned.
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Chapter 3

Methodology

Before conducting the investigation, many procedures were carried out to achieve

high predictive accuracy. This section discusses the practical steps that were imple-

mented.

3.1 Procedure

1. Prepare dataset by means of data preprocessing (Appendix A).

2. Intuitively select suitable features.

3. Perform GridSearch using sklearn library to find the best hyperparameters.

4. Construct SVM using sklearn library; construct NN using tensorflow and keras

library.

5. Perform Cross-Validation.

6. Calculate and plot evaluation metrics (All plots from this point on was gener-

ated with the matplotlib python library).

3.2 Dataset

The dataset used was taken from (http://www.football-data.co.uk), which contains

match statistics for the Premier League since the 1993/1994 season. For this experi-

ment, only data collected from the 2000-01 season to the 2018-2019 season was used,
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because older statistics contained missing data and were in different formats. The

dataset contains a total of 65 columns with the following column headings:

A sample of the dataset:
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3.3 Data Preprocessing

Dealing with 65 columns of data is not ideal, especially when some data, like referee

names, are irrelevant. That is why data preprocessing is paramount. After using

intuition and experimenting with different parameters, the final dataset was narrowed

down to 30 columns with the following headings:

Command Description

HTP/ATP Home/Away Team Points

HTGD/ATGD Home/Away Team Goal Difference

DF Difference In Points

DLP Difference In Last Year’s Position

The other 25 columns consist of the results of the last three matches for both teams.

After processing the data, a statistical technique called t-SNE was used to reduce

the dimensionality of the dataset from 30 dimensions into something that can be

visualized (2D or 3D). The t-SNE Python library function was used to plot the

graph below:

Figure 3.1: t-SNE graph reducing 30 dimensions into 2 dimensions
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The t-SNE diagram suggests a non-linear relationship between the variables, which

is what SVMs and NNs are suited for. The graph also visualizes the three classes

and shows distinguishability, however there are overlapping data points, which may

be a concern during prediction.

3.4 Controlled Variables

All experiments require controlled variables that do not change throughout the course

of testing, below is a table that shows these variables.

Variable Description Specification

Computer and op-

erating system

A MacBook Pro laptop will

be used to run the program

Version: 10.15.4

Processor: 2.7 GHz Dual-Core i5

Memory: 8 GB 1867 MHz DDR3

Programming lan-

guage

The Python programming

language will be used
Version: 3.7

Integrated develop-

ment environment

The Spyder scientific Py-

thon IDE will be used
Version: 4.1.3

Dataset
Dataset for both algorithms

will be the same
Features: 30

Number sets: 7220

3.5 GridSearch

Other than parameters that are fed into a model, some ML algorithms also require

hyperparameters that are predetermined by the user. This is true for NNs and SVMs.

By using the scikit-learn library, a GridSearch algorithm was implemented to find

the combination of hyperparameters that produced the best results. Below is a table

of the values that were tested with GridSearch.
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Neural Network

Batch Size 10, 20, 30, 32, 40

Epochs 10, 25, 50, 100, 150

First layer neuron 10, 25, 50, 100, 150

Second layer neuron 10, 25, 50, 100, 150

Support Vector Machine

Kernel rbf

Gamma 1, 0.1, 0.01, 0.001, 0.0001

C 0.1, 1, 10, 100, 1000

The NN GridSearch ran for 5 hours and 20 minutes. The GridSearch algorithm

tested each possible case to determine the highest accuracy, which means that the

NN model ran 54 = 625 times. The SVM GridSearch, however, is only limited to

3 hyperparameters. The dataset is non-linear, hence only the rbf kernel is tested,

leaving only 52 = 25 combinations.

Neural Network

Accuracy (%) Batch Size Epochs First Layer Neuron Second Layer Neuron

91.33 30 25 50 100

91.29 10 10 50 100

91.27 40 25 25 25

91.25 32 10 25 50

91.23 40 100 25 25

Support Vector Machine

Accuracy (%) Kernel C Gamma

91.14 rbf 100 0.01

91.11 rbf 1 0.1

90.96 rbf 10 0.01

90.90 rbf 1000 0.001

90.90 rbf 1 0.01

The above table shows the top 5 accuracy scores of the GridSearch. Looking at the
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results of the GridSearch, it would be plausible to simply select hyperparameters from

the highest accuracy. However, a better method would be to select the most frequent

hyperparameter in the top 5; this will ensure that the selected hyperparameter is

consistently accurate.

3.6 Algorithm Architecture

Using the results from the GridSearch, below is a table highlighting the hyperpara-

meters and the values that was used in this investigation.

Neural Network

Batch Size 40

Epochs 25

First Layer Neuron 25

Second Layer Neuron 25

Support Vector Machine

Kernel rbf

Gamma 0.01

C 100

The layers in the NN GridSearch refer to the hidden layer; the input and output

layers remain the same. This results in a NN with 83 neurons and 1,503 weights

(including bias nodes).
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Chapter 4

Data Presentation

4.1 Cross-Validation Scores

Cross-validation is a statistical method commonly used by data scientists to test how

well a model is able to be trained by a given dataset and then predict data that it

has not seen. This method of evaluation reduces the chance of over-fitting. In this

experiment, a K-Fold cross-validation, where K = 5, was used. A common practice

is to have K = 10, however, to keep the program computationally inexpensive, a

smaller number was chosen. A K value of 5 means that 20% of the dataset would

be used for testing while the other 80% is used for training. The cross_val_score

function from the sklearn library ensures that the dataset is split in the same way,

allowing comparisons between the NN and SVM.

Cross-Validation Neural Network (%) Support Vector Machine (%)

1 87.95 88.09

2 88.57 88.50

3 89.20 89.34

4 94.11 94.39

5 95.29 95.22

Mean 91.02 91.11

The above table displays the 5 results that came from the cross-validation. Oddly,

the accuracy seems to follow a positive linear relationship with the cross-validation,

suggesting that the model became better at predicting over time. However, it is
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known that cross-validation creates a new model every time, which is discarded after

testing is done, hence the increase in accuracy is likely a coincidence. Variations in

the accuracy could be due to some test subsets being harder to predict due to a high

number of outliers.

Figure 4.1: Cross-validation bar chart

Looking at the bar chart, the NN performed extremely similarly to the SVM. The

mean accuracy for the SVM, however, is 0.09% higher than that of the NN, which

is neglectable. What is surprising is how high the accuracy of both models is. 91%

accuracy for almost any ML model is remarkable.

4.2 Performance Graphs

Performance graphs in ML are used to provide more information about the model.

For NNs, it is typical to plot epoch against accuracy or loss to determine whether a

model is over-fitting or under-fitting. For SVMs, models are not trained by epochs

and the process of learning is not obvious; however, by splitting the dataset, we can
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graph the accuracy and derive a learning curve that will show whether too much

data is used and if the model is over-fitting.

Figure 4.2: Neural Network model loss graph

The model loss graph can be a "diagnostic" to evaluate the performance of NNs.

The graph above shows a steep fall in the first two epochs followed by a plateau

all the way to the 25th epoch. Another important observation is that test loss is

significantly lower than that of train loss. This could be an indication that the test

set is easier to predict than the training set.

In terms of fit, the graph does not display indications of underfitting (decrease in

both the test and training set). The graph also does not suggest an overfit, as the

test set does not increase in loss over time, which leaves the model to be categorized

as a good fit. Unfortunately, the model does not possess all the features of a good

fit, but it is still acceptable.

The model accuracy curve draws similar conclusions to the model loss curve. The

gap between the test and train dataset suggests an "easy" test set. This could be
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Figure 4.3: Neural Network model accuracy graph

solved by using a cross-validation. However, since the purpose of the diagnosis is

to determine whether the NN has a good fit, using cross-validation (which is also

computationally heavy) is not necessary.

The learning curve for the SVM is very different from the NN curve since it plots

training set size as opposed to epoch. Fundamentally, the graphs display different

information. SVMs do not learn from epochs, therefore it is difficult to visualise the

learning that occurs during a single training. What can be done, however, is to run

the SVM using different dataset sizes to analyze how it affects accuracy.

The graph above shows a steep increase with a smaller dataset, but quickly stabilizes

after a few hundred datapoints. Both the training score and the cross-validation score

gradually increase as the dataset gets larger. The conclusion can be made that there

is sufficient data for the SVM to make relatively good predictions. Additionally, the

gradual increase indicates that there is not too much data for the model to handle.
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Figure 4.4: Support Vector Machine learning curve

4.3 Confusion Matrix

After analysing the learning curves, the actual predictions of the model can be in-

vestigated, as the accuracy score alone is usually not enough to distinguish the two

ML algorithms. However, in this investigation, since the accuracies are so high, the

confusion matrix will only be lightly analysed. Below are the two matrices:
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Figure 4.5: Confusion matrix for Support Vector Machine (Right) and Neural Net-
work (Left)

The above matrices includes the predictions for all the 5 K-Fold cross-validation sets

(total number of predictions is 7220). The diagonal sections highlighted in green

and yellow represent the values that were predicted correctly. Thus, a model should

aim to have a high percentage of predictions fall into those diagonal sections of the

confusion matrix. As expected, the differences between the two are very low.

The main purpose of a confusion matrix is to visualise the results of a model, but

since the two models performed similarly, the confusion matrix alone can’t draw any

meaningful conclusions. Additionally, since the accuracies are so similar, analysis on

the classification report and receiver operating characteristic (RCO) would also be

meaningless as they certainly would bear similar results.

4.4 Computational Complexity

In computer science, big o notation describes the performance and complexity of

an algorithm by depicting the worst-case scenario of an algorithm and is used to

represent execution time or space, in terms of memory.
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4.4.1 Time Complexity

Other than accuracy, it is also paramount to analyse the efficiency of any algorithm.

For example, it wouldn’t be very helpful to staticians if their 100% accurate model

took a few weeks to train or predict. A real-life application of ML algorithms are live

score predictions, which rely heavily on time efficiency to help betters win money

and predict outcomes in a matter of seconds. Any delay could be costly. A simple

metric for analysing efficiency would be to programmatically compute the total time

taken for the two models to train and predict the dataset. On Python, this is done

with the use of the "time" library and the programming concept of sequencing.

Although plausible, there are multiple issues with this approach. Firstly, the cal-

culated time would only reveal the more efficient algorithm for one particular case.

A more impartial approach would be to find the time efficiency of different dataset

sizes. Secondly, the nature of how NN trains its dataset (forward and backward

propagation) requires its user to determine the number of epochs. Theoretically, the

higher the number of epochs, the better the NN can train its data. However, too

many epochs can cause over-fitting. SVMs, however, do not contain many hyper-

parameters and therefore the training method is unchanged. Therefore, based on

the number of epochs the user defines, training time will change accordingly. This

in turn creates a trade-off between accuracy and efficiency. In a real life situation,

trying to balance efficiency and accuracy would be a difficult task. Nevertheless,

in this investigation, accuracy is the priority, hence the GridSearch determined an

epoch of 25.

To work around the epoch issue, the time complexity of the ML algorithms can give

a good depiction of efficiency without having to worry about the number of epochs

or the batch size. Time complexity for a NN depends on the architecture of the

algorithm. For an untrained Multi layer Perceptron (MLP), the structure used in

this investigation, evaluating a single pattern requires the model to process all the

weights and neurons. Given that each neuron is associated with at least one weight,

we can ignore the number of neurons, leaving us with the time complexity of O(w),
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where w is the number of weights. Back propagation has the same complexity as

forward evaluation. This leaves us with the time complexity O(w · e ·m·).

The time complexity can be tested using the football dataset and plotting training set

size against time taken. The dataset would have to be split into gradually increasing

lengths. The split dataset would then be used to train the model and the time taken

would be recorded. The results of 100 datasets with varying sizes are shown below:

Figure 4.6: Time complexity curve for Neural Network (Train)

Although there are some anomalies, the relationship between the training set size

and the time taken for training is positively linear where R2 = 0.88, suggesting a

strong correlation. Plotting a trend line seems to intercept the origin, suggesting

that training set size is directly proportionate to time taken.

Time complexity for SVMs is highly debated, however, it is thought that it is between

O(n2) and O(n3). Generally, most kernel methods have a time complexity of O(n2).

After evaluating the time complexity for the NN, the same method can be used to

find the relationship for the SVM.
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Figure 4.7: Time complexity curve for Support Vector Machine (train)

Unlike the NN, the graph above suggests that for the SVM, the train set size has a

quadratic relationship with the time taken. The results are in line with the big O

notation previously mentioned.

With both time complexities for training evaluated, comparisons can be made to

determine which model is more efficient. Keeping in mind that the actual dataset

size is around 7000, purely looking at the training time for the whole dataset would

suggest that the SVM is more time efficient, since the SVM took 0.6 seconds, whereas

the NN took over 2 seconds. However, from the big O notation, it is known that

the time complexity for SVMs is O(n2) while the NN has a linear relationship. This

would mean that for datasets that are larger, the SVM would eventually surpass the

NN in time taken, making it less efficient.
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4.4.2 Space Complexity

As with time complexity, some theories behind space complexity is still debated by

computer scientists. This is my take: In a NN, the only variables stored are the

weights of each layer. Essentially, all the NN is doing is changing the weights ever

so slightly. Hence, if weights are the only variables stored, the space complexity is

O(w), where w is weights.

Similar to NNs, the only variables that need to be stored are the support vectors,

because they are the points that determine the hyper-plane, which evaluates to O(k),

where k is the number of support vectors.

Both models are thought to have a linear increase. Space complexities will not

be tested in this investigation as there is a lack of documentation and resources

concerning the best method to measure and track memory usage for a particular

function.
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Chapter 5

Limitations of the Investigation

Although this investigation achieved its objectives, there are many limitations of the

investigation, which include the following:

1. The training dataset was relatively small (7440 matches) for a NN, as they

require large datasets. However, this may increase the training time for both

models, especially for the SVM, where O(n2).

2. For simplicity’s sake, this investigation looked at classification algorithms for

predicting matches. A more comprehensive model would be a regression model

to predict the numerical score. This would certainly lead to lower accuracy.

3. Only two algorithms were investigated due to the belief that they were the

most suitable. However, in a larger scaled project more algorithms should be

tested.

4. Although hyperparameter optimization was conducted using GridSearch, fea-

ture analysis was not made to search for the best features to use; instead,

intuition was used to approximate features that may have an impact. In a lar-

ger project, softwares such as OpenMOLE could be used to determine features

with the most impact.
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Chapter 6

Conclusion

This investigation sought to find the extent to which supervised ML algorithms

can predict the outcome of Premier League football matches. After a

rigorous process of experimentation and analysis, it can be concluded that SVMs

and NNs are both very capable of predicting football results at 91% accuracy, albeit

only able to predict multiclass outcomes.

Comparing the two models is slightly more complicated and answering question

"Which is better?" has no definitive answer. To begin with, both had very similar

accuracy scores with the SVM coming ahead at just 0.08%. In terms of predictability,

the two models are almost identical. Unfortunately, that is not the full picture, as

NNs are known for performing better with larger datasets. This investigation is only

limited to 7220 match statistics and therefore cannot test this hypothesis.

Other than accuracy, computational complexity was also evaluated for both the

models. Simply looking at training time is not a good picture of time complexity

as NNs train in batches and epochs that can be tuned. Big O notation was used

instead to conclude that, for training, time taken for the NNs increased linearly:

O(w ∗m ∗ e), while the SVMs increased quadratically: O(n2). Therefore, depending

on the dataset set size, one of the models would be more efficient than the other:

SVMs for smaller datasets and NNs for larger datasets. Analysis of space complexity

could not be properly tested, however, it is believed that both models have a linear

space complexity. All in all, neither one is better than the other as they each have

their unique strengths and weaknesses for different problems.
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The use of ML to predict sporting events results is likely to become over-saturated

in the coming years. An expansion of ML in sports for the future could be the

use of convoluted neural networks to predict scoring chances from a video. An

even more robust and ambitious use of ML is computer vision powered referees and

coaches, where ML algorithms can predict which strategy is best and which lineup

the opponent might use. Its applications are boundless.
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Appendices

6.1 Appendix A

1 import numpy as np

2 import sklearn

3 import time

4 import random

5 from sklearn import metrics

6 from sklearn import svm

7 from sklearn . neural_network import MLPClassifier

8 import pandas as pd

9

10 # Read data and drop redundant column .

11 data = pd. read_csv (’EPLfinal_dataset .csv ’)

12 data = data. filter ([’FTR ’,’HTP ’,’ATP ’,’HM1 ’,’HM2 ’,’HM3 ’,’AM1 ’,’AM2 ’,

’AM3 ’,’HTGD ’,’ATGD ’,’DiffFormPts ’,’DiffLP ’], axis =1)

13

14 # Preview data.

15

16 #Full Time Result (H=Home Win , D=Draw , A=Away Win)

17 #HTGD - Home team goal difference

18 #ATGD - away team goal difference

19 #HTP - Home team points

20 #ATP - Away team points

21 # DiffFormPts Diff in points

22 # DiffLP - Differnece in last years prediction

23

24 # Separate into feature set and target variable

25 #FTR = Full Time Result (H=Home Win , D=Draw , A=Away Win)

26 X_all = data.drop ([’FTR ’],1)
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27 y_all = data[’FTR ’]

28

29 # Standardising the data.

30 from sklearn . preprocessing import scale

31

32 # Center to the mean and component wise scale to unit variance .

33 cols = [[’HTGD ’,’ATGD ’,’HTP ’,’ATP ’,’DiffLP ’]]

34 for col in cols:

35 X_all[col] = scale(X_all[col ])

36

37 #last 3 wins for both sides

38 X_all.HM1 = X_all.HM1. astype (’str ’)

39 X_all.HM2 = X_all.HM2. astype (’str ’)

40 X_all.HM3 = X_all.HM3. astype (’str ’)

41 X_all.AM1 = X_all.AM1. astype (’str ’)

42 X_all.AM2 = X_all.AM2. astype (’str ’)

43 X_all.AM3 = X_all.AM3. astype (’str ’)

44

45 #we want continous vars that are integers for our input data , so

lets remove any categorical vars

46 def preprocess_features (X):

47 ’’’ Preprocesses the football data and converts catagorical

variables into dummy variables . ’’’

48

49 # Initialize new output DataFrame

50 output = pd. DataFrame (index = X.index)

51

52 # Investigate each feature column for the data

53 for col , col_data in X. iteritems ():

54

55 # If data type is categorical , convert to dummy variables

56 if col_data .dtype == object :

57 col_data = pd. get_dummies (col_data , prefix = col)

58

59 # Collect the revised columns

60 output = output .join( col_data )

61

62 return output
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63

64 X_all = preprocess_features (X_all)

65 print(" Processed feature columns ({} total features ):\n{}". format (

len(X_all. columns ), list(X_all. columns )))

66

67 # ################################################################

68

69 def SVM_classifier (train_X ,train_Y ,test_X , test_Y ):

70 clf = svm.SVC ()

71 clf.fit(train_X , train_Y )

72 trainAccuracy = clf.score(train_X , train_Y )

73 y_pred = clf. predict ( test_X )

74 accuracy = metrics . accuracy_score (test_Y , y_pred )

75 return accuracy , trainAccuracy ,clf

76

77 def NeuralNets_classifier (train_X ,train_Y ,test_X , test_Y ):

78 clf = MLPClassifier (alpha =1, learning_rate_init =0.0001 , max_iter

=100 ,)

79 clf.fit(train_X , train_Y )

80 trainAccuracy = clf.score(train_X , train_Y )

81 y_pred = clf. predict ( test_X )

82 accuracy = metrics . accuracy_score (test_Y , y_pred )

83 return accuracy , trainAccuracy ,clf

84

85

86 # Cross Validation # 80% 20%

87 from sklearn . model_selection import train_test_split

88

89 from sklearn . preprocessing import LabelEncoder

90 le = LabelEncoder ()

91 y_all = le. fit_transform (y_all)

92

93 # train_X , test_X ,train_Y , test_Y = train_test_split (X_all ,y_all ,

test_size =0.2)

94

95

96

97 import tensorflow as tf
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98 import matplotlib . pyplot as matplot

99

100

101 nn_keras_model = tf.keras. models . Sequential ()

102 nn_keras_model .add(tf.keras. layers .Dense(units =100 , input_dim = 30,

activation =’relu ’))

103 nn_keras_model .add(tf.keras. layers .Dense(units =100 , activation =’relu

’))

104 nn_keras_model .add(tf.keras. layers .Dense(units =1, activation =’

sigmoid ’))

105 nn_keras_model . compile ( optimizer = ’adam ’, loss = ’

binary_crossentropy ’, metrics = [’accuracy ’])

106

107 nn_history = nn_keras_model .fit(X_all , y_all , validation_split =0.20 ,

batch_size = 32, epochs = 100)

108

109 # Make a list of all the data in history

110 print( nn_history . history .keys ())

111 # Summarize the history for accuracy

112 matplot .plot( nn_history . history [’accuracy ’])

113 matplot .plot( nn_history . history [’val_accuracy ’])

114 matplot .title(’model accuracy ’)

115 matplot . xlabel (’epoch ’)

116 matplot . ylabel (’accuracy ’)

117 matplot . legend ([’train ’, ’test ’], loc=’upper left ’)

118 matplot .show ()

119 # Summary of loss history

120 matplot .plot( nn_history . history [’loss ’])

121 matplot .title(’model loss ’)

122 matplot .plot( nn_history . history [’val_loss ’])

123 matplot . xlabel (’epoch ’)

124 matplot . ylabel (’loss ’)

125 matplot . legend ([’train ’, ’test ’], loc=’upper left ’)

126 matplot .show ()

127

128

129 train_X , test_X ,train_Y , test_Y = train_test_split (X_all ,y_all ,

test_size =0.2)
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130

131 y_pred = nn_keras_model . predict_classes ( test_X )

132

133

134 import matplotlib . pyplot as matplot

135 from sklearn . metrics import confusion_matrix , accuracy_score ,

plot_confusion_matrix

136 from sklearn . metrics import ConfusionMatrixDisplay

137

138 cm = confusion_matrix (test_Y , y_pred )

139 print(cm)

140

141 cm_display = ConfusionMatrixDisplay (cm , display_labels =["H","NH"]).

plot ()

142

143 score = accuracy_score (test_Y , y_pred )

144 print(score)

145

146

147

148

149 accuracy_SVM = []

150 train_SVM = []

151 for i in range (3):

152 testAccuracy4 , trainAccuracy4 , clf = SVM_classifier (train_X ,

train_Y ,test_X , test_Y )

153 accuracy_SVM . append ( testAccuracy4 )

154 train_SVM . append ( trainAccuracy4 )

155

156 print("Train for svm:",np.mean( train_SVM ))

157 print(" Accuracy for svm:",np.mean( accuracy_SVM ))

158

159 from sklearn . model_selection import cross_val_score , StratifiedKFold

160 accuracies = cross_val_score ( estimator = clf , X = train_X , y =

train_Y , cv = 10)

161

162 def annK ():

163 nn_keras_model = tf.keras. models . Sequential ()
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164 nn_keras_model .add(tf.keras. layers .Dense(units =100 , input_dim =

30, activation =’relu ’))

165 nn_keras_model .add(tf.keras. layers .Dense(units =100 , activation =’

relu ’))

166 nn_keras_model .add(tf.keras. layers .Dense(units =1, activation =’

sigmoid ’))

167 nn_keras_model . compile ( optimizer = ’adam ’, loss = ’

binary_crossentropy ’, metrics = [’accuracy ’])

168 return nn_keras_model

169

170 from tensorflow .keras. wrappers . scikit_learn import KerasClassifier

171 estimator = KerasClassifier (annK , epochs =100 , batch_size =32, verbose

=1)

172 estimator . _estimator_type = " classifier "

173

174 results = cross_val_score ( estimator = estimator , X = train_X , y =

train_Y , cv = 10)

175

176

177 print( accuracies .mean ())

178 print( results .mean ())

179

180

181

182 start_time = time.time ()

183 estimator .fit(train_X , train_Y )

184 nn_pred = estimator . predict ( test_X )

185 time_1 = time.time ()

186 print("NN took " + str( time_1 - start_time ) + " seconds ")

187

188

189

190 time_2 = time.time ()

191 clf.fit(train_X , train_Y )

192 svm_pred = clf. predict ( test_X )

193 time_3 = time.time ()

194 print("SVM took " + str( time_3 - time_2 ) + " seconds ")

195
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196 from sklearn . metrics import classification_report

197 from sklearn . metrics import plot_roc_curve

198

199 print( classification_report (test_Y , nn_pred ))

200 print( classification_report (test_Y , svm_pred ))

201

202

203 disp = plot_confusion_matrix (clf , test_X , test_Y , display_labels =["H

","NH"])

204 disp = plot_confusion_matrix (estimator , test_X , test_Y ,

display_labels =["H","NH"])

205

206 nn_cm = confusion_matrix (test_Y , nn_pred )

207 svm_cm = confusion_matrix (test_Y , svm_pred )

208 cm_display = ConfusionMatrixDisplay (nn_cm , display_labels =["H","NH"

]).plot ()

209

210

211 print(nn_cm)

212 print( svm_cm )

213

214

215 svc_disp = plot_roc_curve (estimator , test_X , test_Y )

216 svc_disp = plot_roc_curve (clf , test_X , test_Y )

217

218

219 from sklearn . metrics import accuracy_score

220

221 nn_score = accuracy_score (test_Y , nn_pred )

222 svm_score = accuracy_score (test_Y , svm_pred )

223 print( nn_score )

224 print( svm_score )

225

226

227

228

229 labels = ["NN", "SVM"]

230 usage = [ nn_score *100 , svm_score *100]
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231

232 # Generating the y positions . Later , we’ll use them to replace them

with labels .

233 y_positions = range(len( labels ))

234

235 # Creating our bar plot

236 matplot .bar( y_positions , usage)

237 matplot . xticks ( y_positions , labels )

238 matplot . ylabel (" Accuracy (%)")

239 matplot .title(" Machine Learning algorithm ")

240 matplot .show ()

241

242 import numpy as np

243 import matplotlib . pyplot as matplot

244

245 # set width of bar

246 bar_width = 0.25

247

248 # set height of bar

249 bars1 = [ results .mean () *100 , accuracies .mean () *100]

250 bars2 = [ nn_score *100 , svm_score *100]

251

252

253 # Set position of bar on X axis

254 row_1 = np. arange (len(bars1))

255 row_2 = [x + bar_width for x in row_1]

256

257

258 # Plot the points

259 matplot .bar(row_1 , bars1 , color=’#7 f6d5f ’, width=bar_width , label=’

CV’)

260 matplot .bar(row_2 , bars2 , color=’#557 f2d ’, width=bar_width , label=’

Predict ’)

261

262 # Insert ticks on group bars

263 matplot . xlabel (’group ’, fontweight =’bold ’)

264 matplot . xticks ([r + bar_width for r in range(len(bars1))], [’NN’, ’

SVM ’])
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265

266 # Generate the legend and display the graphics

267 matplot . legend ()

268 matplot .show ()

Listing 6.1: Python example
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